AUSTIN, Texas – The potential of silicon anode batteries to transform energy storage solutions is pivotal in addressing climate objectives and fully realizing the capabilities of electric vehicles.
Nonetheless, the persistent loss of lithium ions in silicon anodes is a significant hindrance to the development of next-generation lithium-ion batteries.
The Rice lab of chemical and biomolecular engineer Sibani Lisa Biswal found that spray-coating the anodes with a mixture of the particles and a surfactant improves battery life by 22% to 44%. Battery cells with a greater amount of the coating initially achieved a higher stability and cycle life. However, there was a drawback: When cycled at full capacity, a larger amount of the particle coating led to more lithium trapping, causing the battery to fade more rapidly in subsequent cycles.
Replacing graphite with silicon in lithium-ion batteries would significantly improve their energy density ⎯ the amount of energy stored relative to weight and size ⎯ because graphite, which is made of carbon, can pack fewer lithium ions than silicon. It takes six carbon atoms for every single lithium-ion, while just one silicon atom can bond with as many as four lithium ions.
“Silicon is one of those materials that has the capability to really improve the energy density for the anode side of lithium-ion batteries,” Biswal said. “That’s why there’s currently this push in battery science to replace graphite anodes with silicon ones.”
To read more, click on ScienceTech





